Statistics Midterm 9803 ANOVA, correlation, and multiple regression, and *t* tests

Name: Benedict Tieniber

"Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write." H. G. Wells.

PART I (5 points)

True and False - Add short explanation to your selection

- 1. One of the main objectives of simple linear regression is to determine the type of relationship that exists between X and Y and test for its significance TRUE
- 2. If you want to know if your salary depend on your college GPA. Then, College GPA in this case is the dependent variable. FALSE – The dependent variable is salary
- 3. We want to test whether ex husbands and ex wives have the same reasons to justify the divorce? This is pair sample t-test FALSE Independent T-Test
- 4. In the article "Students Perceptions of satisfaction and anxiety on online doctoral program..." The authors concluded (p. 91) "Students with lower technological anxiety scores experienced higher level of satisfaction" They performed a one-tailed test correlation. FALSE – The test used was the two-tailed test
- 5. In the article "Do perceptions of college students from one liberal arts college on long island vary..." The authors show how wealthy students outperformed poor in the uses of spreadsheets. FALSE – Wealthy was never used in the study

Section 2 (5 points)

1. Research about effect size and give an example about it. Why is this important? Effect size = r^2 for ANOVA. The 'specific' percent of variance accounts for the change.

- 2. What's the difference between p-value and effect size? The difference between p-value and effect size is p-value is significance and effect size is the percent of variance the independent variable has on the dependent variable.
- 3. A researcher used correlation to examine the relationships between a binary predictor variables (e.g. Asian American versus Caucasian) and a continuous criterion variable (AP physics score). He coded:
 Asian American (AA) = 1

Asian American (AA) = 1Caucasian (C) = 2

Please explain the following results:

For ethnic (AA=1, C=2) and AP physics score: r = .34, p = .054 No correlation/relationship between Caucasians and Asian Americans.

For ethnic (AA=1, C=2) and AP physics score: r = -0.6, p = .001The correlation is negative. Asian Americans are performing better in Physics than Caucasians.

- 4. Matching (2 points)
- Paired Sample T-Test -Involves pretest and post-test
- ANOVA -Involves Mean differences
- Two-way ANOVA -Involves interaction among 2 variables or factors
- Binary Linear Regression Addresses relationship between 2 variables

Part III (10 points)

2. Multiregression and correlation (5 points)

Based on the data set from the Multiple regression chapter , We conducted a multiregression analysis to predict the overall injury index from previous medical difficulties and age

Dependent Variable = Injury

Independent Variables (7 variables) = medimex, age, abdoms, gluts, quads, grip, arms

- We checked distributions \rightarrow all the variables showed normal distribution
- Table 1 shows the bivariate correlations between independent variables and dependent variable
- Table 2 shows the multiregression results

		INJURY	QUAE		GLUTS	ABDOMS	ARMS	GRIP	/.≹	ίE
INJURY	Pearson Correlation	1	1		393**	232*	243*	099	₹ ≜	.290'
	Sig. (2-tailed)		.1		.000	.020	.015	.328	*	.003
	Ν	100	1		100	100	100	100	ŧ	100
QUADS	Pearson Correlation	162			.484**	.521**	.372**	.190	*	.096
	Sig. (2-tailed)	.107			.000	.000	.000	.059	₹ ≵	.344
	Ν	100	1		100	100	100	100	*	100
GLUTS	Pearson Correlation	393**	.4	**	1	.487**	.338**	.253*	ŧ	.158
	Sig. (2-tailed)	.000	.(.000	.001	.011	\$.115
	Ν	100	1		100	100	100	100	¥ ≰	100
ABDOMS	Pearson Correlation	232*	.5	**	.487**	1	.194	.190	\$.132
	Sig. (2-tailed)	.020	.(.000		.053	.058	\$.191
	Ν	100	1		100	100	100	100	*	100
ARMS	Pearson Correlation	243*	.:	**	.338**	.194	1	.493**	¥ ¥	.037
	Sig. (2-tailed)	.015	.(.001	.053		.000	\$.716
	Ν	100	1		100	100	100	100	\$	100
GRIP	Pearson Correlation	099	.1		.253*	.190	.493**	1	₹ *	.005
	Sig. (2-tailed)	.328	.(.011	.058	.000		Ţ ¥	.958
	Ν	100	1		100	100	100	100	ŧ	100
AGE	Pearson Correlation	.290**	.(.158	.132	037	005	\$	1
	Sig. (2-tailed)	.003	.3		.115	.191	.716	.958	₹ \$	
	Ν	100	1		100	100	100	100	¥	100
MEDINDEX	Pearson Correlation	.337**	1		388**	182	224*	129	\$.230'
	Sig. (2-tailed)	.001	.1		.000	.070	.025	.201	¥	.022
	N	100	1		100	100	100	100	¥	100

**. Correlation is significant at the 0.01 level (2-tailed).

* Correlation is significant at the 0.05 level (2-tailed).

Table 1. Bivariate Correlations (also call zero-order correlations)

		Unstand Coeffi	lardized cients	Standardized Coefficients			Collinearity S
Model		В	Std. Error	Beta	t	Sig.	Tolerance
1	(Constant)	-141.553	101.652		-1.393	.167	
	QUADS	.540	.600	.100	.900	.371	.609
	GLUTS	-3.386	1.042	375	-3.250	.002	.562
	ABDOMS	682	.627	117	-1.087	.280	.646
	ARMS	842	.657	138	-1.281	.203	.649
	GRIP	.805	1.005	.081	.801	.425	.741
	AGE	5.331	1.501	.330	3.553	.001	.867
	MEDINDEX	89.909	99.132	.090	.907	.367	.755

a. Dependent Variable: INJURY

Questions:

1) From table 2,

a) write the multiregression equation based on the unstandardized coefficients .54 quads – 3.386 gluts - .682 abdomen - .842 arms + .805 grip + 5.331 age – 89.909 medium index – 141.553 = Injury

INJURY =

b) Interpretation of betas:

- Interpret "b" for quads -- for each 1-unit increase in quads, injury is expected to up by .54 when holding all other variables constant.
- Interpret "b" for gluts -- for each 1-unit increase in support, injury is expected to down by 3.386, when holding all other variables constant
- Interpret "constant" -- if a person has a score of "0" on all predictors, their injury is expected to be -141.553.
- The 2 best predictors of the injury index are (Tip, check magnitude of betas, and p-values): Gluts and age
- The 2 worst predictors of the injury index are: Grip and medical index

Coefficients^a

-	There	are 5 patterns of t	pivariate/multivariat	e relationship				
	Simple correlation with the criterion							
		-	0	+				
Multiple regression weight	I	Bivariate relationship and multivariate contribution (to this model) have same sign	"Suppressor variable" – no bivariate relationship but contributes (to this model)	"Suppressor variable" – bivariate relationship & multivariate contribution (to this model) have different signs				
	0	Non-contributing – probably because colinearity with one or more other predictors	Non-contributing – probably because of weak relationship with the criterion	Non-contributing – probably because colinearity with one or more other predictors				
	+	"Suppressor variable" – bivariate relationship & multivariate contribution (to this model) have different signs	"Suppressor variable" – no bivariate relationship but contributes (to this model)	Bivariate relationship and multivariate contribution (to this model) have same sign				

2) There are 5 patterns of bivariate/multiregression relationship as shown in Table 3:

c) Explain the relationship between each independent variables and the model (Tip: You need the information on Tables 1, 2 and 3). Quads 0,0 --- non-contributing Gluts -,- --- bivariate Abdominals -,0 --- non-contributing Arms --, 0 --- non-contributing Grip 0,0 --- non-contributing Age +,+ ---- bivariate Medical Index +,0 --- non-contributing

d) Which variable(s) are/is causing collinearity? (if any) Explain collinearity. Arms, abs, and medical index. Variables have an effect – one 'eats' the other.